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Abstract 
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a priori u n i f o r m l y  a n d  i n d e p e n d e n t l y  d i s t r i b u t e d  
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d i s t r i b u t i o n  [ B r i c o g n e  (1984) .  A c t a  Cryst. A 4 0 ,  4 1 0 -  
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445; (1988). Acta Cryst. A44, 517-545]. In this paper 
a start is made in using the maximum-entropy prin- 
ciple for deriving exponential joint probability distri- 
butions of structure factors for a chemically more 
realistic model of a priori non-uniformly and non- 
independently distributed atoms. The maximum- 
entropy equations are obtained by treating the atomic 
positions as well as the reciprocal vectors as random 
variables and applying constraints on the maximum 
of the distribution. The interdependence of the 
Lagrange multipliers leads to inequalities which may 
be compared with the Karle-Hauptman inequalities. 
The radial interatomic correlations such as minimal 
interatomic distances lead to integrals whose evalu- 
ation via the cluster integral mechanism is shown to 
be equivalent to those of the classical hard-sphere 
gas in an external field [Van Kampen (1961). Physica 
(Utrecht), 27, 783-792]. The Debye scattering 
equation results from these calculations. The 
exponential multiplet terms are expressed as cluster 
integrals. From the distribution of the single structure 
factor the influence of the interatomic correlations 
on the normalization procedure is assessed. The 
exponential triplet distribution up to order N -3/2 is 
derived and is shown to be in agreement with the 
exponential Edgeworth result [Karle & Gilardi 
(1973). Acta Cryst. A29, 401-407]. The effect of the 
radial interatomic correlations on the triplet distribu- 
tion is discussed. The exponential quartet distribution 
up to order N - l  is derived, and found to be equal to 
the well known result [Hauptman (1975). Acta Cryst. 
A31, 617-679, 680-687] except for some normaliz- 
ation terms resulting from the interatomic correla- 
tions. 

1. Introduction 

The derivation of joint probability distributions 
(j.p.d.'s) using the characteristic function (Karle & 
Hauptman, 1953; Hauptman & Karle, 1958; Bertaut, 
1955, 1956; Klug, 1958; Naya, Nitta & Oda, 1965; 
Karle, 1972; Hauptman, 1975a, b, 1976; Peschar & 
Schenk, 1987; and many other papers) may be under- 
stood using the Fourier integral representation of the 
Dirac delta function in the complex plane (z ~ C): 

~(z )=(27r) -2~exp( ix . z )dx  (1.1) 
x 

where the integral is over the complex plane and the 
dot product in the complex plane is defined as 

a .b=-Re (a )  R e ( b ) + I m ( a ) l m ( b ) .  (1.2) 

Having defined the complex structure factors in a 
certain space group F ( k , ,  r~) as functions of the 
atomic positions in the asymmetric unit of the cell r~ 
( ~ , = I , . . . , N )  and reciprocal vectors k ,  ( ~ =  
1 , . . . ,  M), (1.1) can be used to evaluate the joint 
probability distribution of the set of M corresponding 

complex structure-factor variables F,  : 

P ( F , )  = j ' . . .  J [I 3[ F ,  - F(k,,,  r~)]P(r~) dr,.  
I '~  /,t  

(1.3) 

P(r~) is the a priori probability distribution of the 
atomic positions in the unit cell. With (1.1) this 
becomes the expression with the characteristic 
function: 

P( F~) = (2rr)-2M J " " " J exp (--i ~ x~ . F~,) 
Xt..t 

X~. ' ' ~ e x p [ i ~ x ~ , . F ( k ~ , , r , ) ]  

x P(r , )  dr,  dx~,. (1.4) 

After Taylor expansion of the first integrand and 
moment-cumulant transformation and a change of 
variables where phase-restricted structure factors are 
concerned, this yields the Edgeworth series expansion 
in Hermite and/or  Laguerre polynomials with the IEI 
values and the phase invariants as arguments (Klug, 
1958; Naya, Nitta & Oda, 1965; Peschar & Schenk, 
1987). A final transformation may yield an exponen- 
tial distribution (Karle, 1972; Karle & Gilardi, 1973). 

The Karle-Hauptman inequalities bound the 
values of the set of M structure factors F~, in (1.4) 
(Karle & Hauptman, 1950). As P(F~,) must be zero 
outside these bounds, the polynomial expansion 
should yield an infinite number of roots there, which 
cannot be achieved with a limited number of 
expansion terms taken into account. In agreement 
with this, computations show that the series 
expansion does not converge uniformly on its 
domain, which justifies an attempt to find an alterna- 
tive for (1.4). 

Because of the delta function in (1.3), only contri- 
butions for which F (k~ , , r , )=  F,, are taken into 
account in (1.4), which may be compared with the 
micro-canonical integral of a classical gas with con- 
stant volume. The role of the Hamiltonian is played 
by the structure factor, being a function of the atomic 
coordinates which vary randomly through the unit 
cell (Jaynes, 1957). In analogy with the classical gas 
theory, application of maximum entropy to the hyper- 
surface F(k,~, r ,)  = F~, yields for each structure factor 
F,~ a Lagrange multiplier fl~, which is a function of 
the observed intensity and possibly other invariants. 
It has already been demonstrated (Bricogne, 
1984, 1988) that maximum entropy yields results that 
are useful for direct methods and that are consistent 
with evaluation of (1.4) with the saddle-point 
approximation. Here/3,, instead of ;t,, are used, since 
the maximum-entropy constraint is different from that 
used by Bricogne; the constraint is chosen to be the 
maximum instead of the expected value of the distri- 
bution. 
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In a previous paper (Kronenburg, Peschar & 
Schenk, 1990), the former concept was introduced to 
derive the j.p.d, for a single structure factor in P1 
employing a uniform a priori distribution of the 
atoms. In the present paper, however, the concept of 
random-variable reciprocal vectors is combined with 
the chemically more realistic model of non-overlap- 
ping hard spheres. This gives rise to irreducible cluster 
integrals (Mayer & Mayer, 1940) which are shown to 
be similar to the integrals arising from the partition 
function of a hard-sphere gas in an external field (Van 
Kampen, 1961). Application of this formalism to the 
j.p.d, for the triplet and the quartet phase sums leads 
to results which are largely consistent with the 
Edgeworth-series result. In particular, the radial inter- 
atomic correlations, responsible for the fluctuation in 
the Wilson curve, lead to conclusions about the nor- 
malization of IEI ° ' '  values for phasing procedures. 

2. Maximum entropy in reciprocal space in PI 

The structure factors F(k~,, r~) are functions of both 
k~, and r , ,  the former being a set of M vectors in real 
three-dimensional (reciprocal) space, and the latter 
being a set of N atomic positions in the real three- 
dimensional (direct) space of the unit cell: 

F(kt, , r . ) :  [~3M Q [~3N  ..~ c M  (2.1) 

Both k .  and r .  are random variables here and the k .  
will be fixed to the measured reflections later. Apply- 
ing the central limit theorem for both and taking the 
a priori probability distribution of the r .  to be P( r . ) ,  
one can safely assume that the probability distribution 
P(k~,, r,, [ F~, ) is a Gaussian in the complex plane: 

P(k,,, r~ [ F,.) 

oCexp[-~/3~,lF~,-F(k~,,r,)12]P(r~). (2.2) 

With the assumption that there is a set of Lagrange 
multipliers that maximizes probability on the hyper- 
surface F(k~,, r~) = F~,, these multipliers are 
equivalent with the /3,, which follows from results 
below. This justifies the use of (2.2) and the term 
maximum entropy attached to it; no effort is made 
here to prove the general mathematical equivalence 
of the central limit theorem with the maximum- 
entropy formalism. By integration over the atomic 
positions in order to arrive at a distribution in 
reciprocal space, P(k~ [F~,) becomes 

P(k~, ] F~,) 

oc~" " " J exp [ - ~  /3,.lF,.- F(k,.,r.)12] P(rv) dr~. 
Irl, 

(2.3) 

The /3~, are given by fixing the maximum in the 
complex plane at IF.l=lF.I °bS, which yields the set 

of maximum-entropy (ME) equations: 

dlogP(k~.[F,.)/dlF~,l=O a t l F . l = l F . I  °"'. (2.4) 

If the distribution is assumed to be symmetric in the 
IF~,[ around some point, these ME equations result 
in Lagrange multipliers /3~, equivalent to the A~, 
derived by using expected values (Bricogne, 1984, 
ME3), because in that case the maximum coincides 
with the expected values. When the resulting /3,, 
values are functions of both the constraint values and 
the random variables in C M, the random variables 
are averaged out. Substitution of these /3~, in (2.3) 
yields the joint probability distribution of the random 
variables. 

The joint probability distributions for fixed k,~ 
result from Bayes's theorem (Feller, 1957), with 
P(k~,) = 1: 

P(F~ Ik,)  = P~(F~)P(k, IF,~) (2.5) 

where P~(F~,) is the central limit theorem result that 
is independent of k,~ and P(r~). This is the first 
Bayesian inversion; a second similar Bayesian inver- 
sion needed to fix the intensities is introduced later. 
The k~, on the left-hand side are a subset of the 
measured reflections indicated by integers (h, k, l): 

k,~ c 27r(ha* + kb*+ lc*). (2.6) 

With the definitions 

t r , -  ~ f~  (2.7) 

E,., ----G2'/2Ft, (2.8) 

the central limit theorem result for general-valued 
structure factors is (Wilson, 1949) 

P~( E,) = Iq { =-'IE,,l exp (-IE,,I~)}. (2.9) 
kt 

The structure factors to be substituted in space group 
P1 are 

F(k~,,r,)=~.f, exp(ik~, . r , ) .  (2.10) 
v 

Each summand of the exponential of the integrand 
(2.3) can be expressed with (2.10): 

IF~, - F(k,. ,  r~)l 2 

= [F,I 2 + ~2 + 2 E ~.f,,f,, cos [k,~. ( r , - r K ) ]  
IJ>K 

-2 lF , , lXLcos[arg(F~, ) -k , , . r~] .  (2.11) 

This result contains internal and external terms that 
can be associated with the partition function of a real 
gas in an external field (see § 4). After evaluating 
integral (2.3) and solving (2.4), one can derive the 
following expected values with dlog[f(x)]/dx= 
[df(x)/dx]/f(x): 

( I F ~ , - F ( k , , r , ) 1 2 ) = - a l o g  P(k~.lF,)/afl~,. (2.12) 
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Once the/3,, have been solved by (2.4), this identity 
yields expected values of the radial and tangential 
parts of the structure factors as demonstrated in the 
following sections. We conclude that if the integral 
with the delta function (1.3) is interpreted as the 
micro-canonical integral of an isolated gas of point 
atoms with respect to the generalized complex ener- 
gies F(k,~, r~), then the integral with the exponential 
(2.3) can be considered as the partition function of 
that gas in thermal equilibrium, where maximum 
entropy is obtained by determining the/3,, from the 
ME equations (2.4), using the maximum of the distri- 
bution as the constraint. In the following these for- 
mulas are used to derive joint probability distribu- 
tions in P1 for the single structure-factor case and 
for the triplet and quartet phase sums, including 
atomicity as well as interatomic correlations. 

3. Evaluation for a s ingle structure factor in PI  

Evaluating integral (2.3) for a single structure factor 
in P1 with a uniform a priori distribution P(r~)= 1, 
the double summation term averages out. The result 
is (Kronenburg et al., 1990). 

P(F J k) oc Poo(F) exp [ - / 3 ( IF I  2 + ~2)] H lo(2/3f.IFI) 
v 

(3.1) 

where I, are the modified Bessel functions (Watson, 
1952). Here the following ratio of modified Bessel 
functions is defined: 

y,(x)-= l , ( x ) / lo (x ) .  (3.2) 

The/3 is solved by (2.4): 

iFlob, = y~f.y,(2/3f . i  F ob,). (3.3) 
v 

The result for maximum entropy in direct space for 
equal atoms is equivalent [Bricogne, 1984, equation 
(3.14)]; for unequal atoms it is equivalent with the 
multichannel solution (Bricogne, 1988, § 2.2). The 
ME equations (2.4) are thus confirmed in the single 
structure-factor case. Expanding the modified Bessel 
functions in (3.3) and substituting the expected value 
for the power of the structure-factor magnitude 
{IEI 2) = 1, the/3 for a single structure-factor results in 

. 1 0"21 - l  /3=__ 2( + f2)  . (3.4) 

Equation (3.1) with the/3 substituted from (3.4) is a 
probability distribution that can be compared with 
Edgeworth expansion results (Peschar & Schenk, 
1987; Peschar, 1987), resulting in Figs. 1 and 2. We 
conclude that the maximum-entropy equations (2.4) 
result in a probability distribution for a single struc- 
ture factor that is equivalent with Edgeworth- 
expansion results for small ]E] values. However, for 
larger IEI values the ME distribution goes to zero in 

contrast with the expansion curves, thus yielding a 
reliable result everywhere. For some I EI values the 
ME result is significantly larger than the expansion 
result, an effect that increases with decreasing N. The 
exact form of the distribution is apparently not con- 
served by this maximum-entropy formalism; in the 
following sections, however, it will appear that effects 
of interatomic correlations present in every structure 
may be larger than this inconsistency. Expanding the 
modified Bessel functions in (3.1) and substituting 
(3.4), one obtains the following limit: 

lim P(F)  = P~(F). (3.5) 
N ~ o o  

Application of (2.12) to (3.1) results in the expected 
value for a single structure-factor invariant: 

(cos [arg (F  °bs) - k .  r . ] ) =  y,(2/3LlFl°b'). (3.6) 

This is a completely acceptable result since y~(x) is 
a monotonously increasing function of x smaller than 
one and for equal atoms/3flFI = I E I / N  ~/2 

1.5 

1.0 

2~ 
g 0.s 

0.0 

'~ N=1000 / 

5 I0 

Fig. 1. Comparison of (3.1) and (3.4) with polynomial expansions 
(Peschar & Schenk, 1987). The solid curves represent function 
(3.1) for three values of N and for each one the broken curves 
represent the expansions in Laguerre polynomials up t o  R 9 ,  9 

and RI2 ,12  . 

1.5 

1.0 

0.5 

o .o  . . . . . . .  ' . . . . . . . . .  ' . . . . . . . . .  ' . . . . . . .  ~ . . . . .  ' - - - ~ " " ' , - ~  . . . . . . .  ' 
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

I/ 
\ \ 

x / 

Igl  

Fig. 2. Comparison of (3.1) and (3.4) with polynomial expansions 
as in Fig. 1, but for unequal scattering factors f~. 95 carbon 
atoms and 5 atoms of varying elements (see figure) are prese'~t. 
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4. Interatomic correlations and cluster integrals in PI 

Having evaluated integral (2.3) for the single struc- 
ture-factor case with a uniform a priori distribution 
P(r , )  = 1, we demonstrate how integral (2.3) can be 
calculated with a non-uniform a priori atomic distri- 
bution that accounts for interatomic distances as well 
as atomicity. A set of minimal interatomic distances 
D~, for each pair of atoms is introduced and easily 
extended to interatomic distances d~,, for each pair 
of bonded atoms later. Derivation of radial correla- 
tion between atoms starts with the hard-sphere a priori 
probability distribution: 

{ P(r~) = 1 when I r~ - r~ l>  D~ for each v 

and each K # v (4.1) 

P(rv) = 0  otherwise. 

In order to apply the irreducible Mayer cluster 
integrals (Mayer & Mayer, 1940), the following 
definitions are used in correspondence with (2.11); 
the internal terms in integral (2.3) are 

/2 ( r~-  r~)=  exp {-2f~f~ ~ fl~ cos [k~,. ( r~ - r~ ) ]}  
/ . t  

when Ir.-r~l> D~ 
(4.2) 

1 2 ( r . - r ~ ) -  0 

otherwise. 

The external terms in integral (2.3) are 

w ( r . ) - e x p  {2f~ E 13.1F.I cos [arg ( F ~ , ) - k . .  r~]}. 

(4.3) 

The evaluation of integral (2.3) with (2.11) substituted 
for PI  is equivalent to the evaluation of formula (11) 
in the paper by Van Kampen (1961), in which for the 
internal potential ~0 the double-summation terms 
O ( r ~ -  r , )  are substituted, supplied by a hard-sphere 
potential as in definition (4.2), and for the external 
potential qJ the single summation terms w(r~) as 
defined in (4.3). Evaluation of integral (2.3) is 
equivalent to the evaluation of the partition function 
for a classical hard-sphere gas in an external field, 
which can be done by means of irreducible Mayer 
cluster integrals (Van Kampen, 1961). The maximum- 
entropy equations (2.4) are again solved for this new 
result of integral (2.3). 

Application is only exactly correct in the thermo- 
dynamic limit (Nooo,  N~ V= n). Since usage of 
integral (2.3) is already consistent for relatively small 
N (see Fig. 1) in the uniform case, it is assumed that 
N / V  = n is small enough in practical cases to ensure 
that the irreducible cluster integral results hold. 

The first and second irreducible Mayer cluster 
integrals as used by Van Kampen in order to evaluate 

integral (2.3) are: 

e ~  = ~ ~ to( r~) to(r~){O(r~-r~)-  1} dr~ dr~ (4.4) 
t v r ,¢  

= I I I 

x { O ( r . -  r~ ) -  1 }{gT(r~-r~)-  1} 

× {S2(r~- r , ) -  1} dr~ dr~ dr, .  (4.5) 

With these definitions, for equal atoms, incorporation 
of (4.1) in integral (2.3) results according to Van 
Kampen's formula (Van Kampen, 1961, equation 14) 
in 

P(k~, IF t . ) = ~  {exp (-flt, lFt.,2) l-[. Io(2flt, f,.[Ft,[) } 

x exp [ ( N )  ( v(w))-2e, 

+ ( 3 ) ( V(to))-3 e2 +. . .l . (4.6) 

In the unequal-atoms case, the ( N )  in this formula 

results from double summation of the e~,~ over v and 

K and the ( N)  from threefold summation etc. Higher - 

order cluster integrals may be defined analogously 
and substituted in (4.6). Evaluation of el and e2 for 
a single structure factor in P1 yields, taking f~ =f~ 
for the second cluster integral (see Appendix 1) 

(o~) ~- (o~) = lo(2~f~lFI) (4.7) 

G,,(k, D~,,) - 47rD~,,(nk)-2[sin (nkD~,,)/nkD~,, 

- cos (nkD~,,)] (4.8) 

e,~. = 2 V(w)2{ II(2~f~f,,)- Io(2~f.f,,) 
x y,(Zflf~[F[)y~(2flf~lF])}G,(k, D~,,) (4.9) 

e2.,,~ = - 4  V(to)3flf~f,,{ lo(Z~f~f,,)G,( k, D.,,)} 2. 
(4.10) 

Substituted in (4.6), these results change the single 
structure-factor distribution (3.1) as well as the expec- 
ted value (3.6). G~ can be interpreted as the excluded 
volume by the minimal interatomic distance as seen 
from k, which can be demonstrated by taking a limit 

lim Gl(k, D )  4 3 =~rrD . (4.11) 
k ~ O  

The el and e 2 change sign as the corresponding 
minimal interatomic distances make positive or nega- 
tive contributions to the distribution in reciprocal 
space on the sphere ]k I = k. After substitution of et 
and e2 in (4.6), the expected value becomes with 
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(2.12) and Io = 1, 12~0: 

"(IF(k, r.)l ~) 

x {1 - [ 2 (  N - 2)/3 V]G,(k, D.,,)}G,( k, D.,,) } 
3 

(cos [arg ( F  °bs) - k .  r . ])  

= y,(2flf, lF'°bs){1-( Vf,)-' Y~f~G,(k,, D.,,)}. 

(4.12) 

Once the irreducible cluster integral for a sphere has 
been computed, the result for a spherical layer is 
easily obtained. If a number n,,, of  atoms lies within 
a spherical layer of a small thickness r with radius 
d,,~ from atom v, it can be demonstrated that the 
Debye scattering equation (Debye, 1915) follows 
from the first irreducible cluster integral. The r must 
be given by conservation of probability: 

4¢rd~rV -I = n.~. (4.13) 

The n~,, are defined in such a way that 

n,., = 1 

~ n,,, = N -  m. 

for all v~ 1 . . .  N and 
(4.14) 

where rn, is the number of atoms that do not bind to 
atom v. These atoms must be at some distance from 
atom v larger than some minimal interatomic distance 
D,K. The interatomic distances d,,, are not specified 
further except for 

d,, = 0 for all v ~ 1 . . .  N. (4.15) 

The contribution of the spherical layer to the cluster 
integrals is given by 

- r dG,(k,  D ) / d D  = r4zrd2,~ sin (nkd,~,)/nkd,,,. 

(4.16) 

Substitution of (4.13) and (4.16) in (4.12) gives 

(IF(k, rv)12) = f. {f. +Z¢. n. L sin (kdv~)/kd.~, 

m v 

- V -! ,~=~ { 1 -  [2 (  N - 2 ) / 3  V] 

x G,(k, D~.)}f~G,(k, D~,)} 

(cos [arg ( F  °b~) - k .  r~]) 

= y,(2/3f~lFI °bs) 

(4.17) 

If one takes only the terms dependent on IFI in (4.6), 
the corresponding j.p.d, is 

p( F I k) P (F) exp (- IFI 

x n(lo(2~f.lFI), exp [ y,(2/3f.lF ) 

x t¢(~. n~,, [sin (kdv,,)/kd.~,]y,(2flf~lFI) 

- }]) - V - '  ~ G,(k,D., ,)y,(2flf ,  IF]) . 
K = I  

(4.18) 

The Debye (1915) scattering equation for interatomic 
distances between binding atoms is present in the first 
identity of (4.17) as expected, supplied by a term that 
accounts for minimal interatomic distances of pairs 
of atoms that do not bind. This accounts well for the 
effect of minimal interatomic distances and inter- 
atomic distances on the Wilson statistics; the a priori 
knowledge (4.1) might correspond well with the 
actual structure present in the unit cell and averaging 
over Ikl = k yields expected values as functions of k. 
The effect of  interatomic distances on the Wilson 
curves has been the subject of studies (Subramanian 
& Hall, 1982) using the Debye scattering equation 
for all interatomic distances present in the structure. 
The additional term in (4.17) for the minimal inter- 
atomic distances, for example between atoms from 
two different fragments, might well account for the 
differences of the Debye scattering equation with 
experimental Wilson curves; the values to be sub- 
stituted for the D,K remain however to be found. In 
Fig. 3 the first identity in (4.17) is compared with 
randomly generated structures with a minimal inter- 
atomic distance (no Debye contribution). The 
minimal interatomic distance used for the random 

1 . 5  

0 . 5  

I , i ! 
0 5 l 0  15 

Fig. 3. Comparison of the expected value ([El 2) as a function of 
the length of the reciprocal vector I kl with equal f~ = f  for N = 50 
and V=18NA 3. A hard-sphere model with D=1.54/~, is 
assumed (no Debye contribution), leading to the function (4.17) 
with n~,, = 0 (broken curve). The solid curve results from 10 000 
random structures with D = 1.54 ~. 
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structures is consistent with the theoretical curve 
(4.17) for the corresponding D; only for very small 
Ikl values do irreducible cluster integrals of order 
larger than two give a small contribution.  Although 
the /3  does not appear  in the first identity of (4.17), 
for other results the /3 should be solved from (2.4) 
and (4.18), resulting in (with I 0 -  1, I2 = 0) 

IFI °~~= E ~,(2/3f~lFI °b$) 
t~ 

x {f~ + ,,Y~ ,, n~,~f, sin (kd,,,~)/kd,,~ 

m } 
- V- '  ~ f~Gl(k, D~,,,) . (4.19) 

K = |  

As is demonst ra ted  in the following sections, this 
equation is important  for the effect of the fluctuations 
in the Wilson curve on the IEI °~ values to be sub- 
stituted in the exponential  multiplet  distributions. 

5. The triplet distribution from ME and the 
cluster integral 

In the following it is demonst ra ted  that evaluation of 
integral (2.3) by means of  irreducible cluster integrals 
and appl icat ion of ME equations (2.4) leads to 
exponential  joint  probabil i ty distributions for multi- 
plets. These distributions are consistent with 
maximum entropy and interatomic correlations and 
result directly from the first irreducible cluster 
integral. The evaluation of the first irreducible cluster 
integral (4.4) for three structure factors {F,,, ~ = 
1, 2, 3} in P1 yields extra triplet terms [s ~ (1, 2) with 
fl  = f .  and f2=f.. ,  n,~, six indices and r = r ~ - r ~ ] :  

(oJ) = (o~,) = ]-I lo(2/3,.f,]F,,I) (5.1) 

r l  I r [ <  D,.~ ~.s 

- ~  [n~,~k~, .r ,  + n,,2k~, . ( r l - r ) ] } )  d rd r l .  (5.2) 
/.L 

Evaluat ion of this integral with 1o(2/3f2) ~ 1 and 
y2(x) = 0 yields the sum of the three single structure- 
factor cluster-integral results (4.9), plus an extra trip- 

let term when k l + k 2 + k 3  =0:  
t r i p  e,,~ = - 2  V(oJ) 2 cos (~,) 

{43  ,} x ~rrD~+2 G,(k , .  D.~ 
At 

I . g  ) 

with q , , -  arg ( F i ) + a r g  ( F 2 ) + a r g  (F3). The twofold 
summat ion  in (4.6) is simplified to a single 
summation:  

v - bt 

= ( N -  l) E l i  ~',(2/3,,/,IFul). (5.4) 
u 

A sum of cluster terms leads with (4.6) to a product  
of  probabilit ies.  

Now the following identity is used: 

P(q,,,IF~,IIk~,)=P(IF~,IIk,,)P(O, IIF,,I,k~,). (5.5) 

This is the second Bayesian inversion, needed to fix 
the intensities. As the total irreducible cluster integral 
of the triplet is the sum of the three single structure- 
factor irreducible cluster integrals and a term depen- 
dent on the triplet phase sum g,,, only this triplet term 
appears  in P(0 ,  lIFe, i, k,,) which is the condit ional  
probabil i ty distribution. Applicat ion of (4.13), (4.16) 
and (4.11) to all terms in (5.3) results in 

P(~0, [IF.I,  k . )  

oc exp [2  cos (q,,) ~ (1 +f~- '  

- V-' ~ LG, (k . ,  O~.) ~,,(2/3.f , . lF.[)  . 

(5.6) 

The set of three equations (2.4) are now dependent  
on ~0,, so the /3~, need to be solved as well. The /3~, 
are known as functions of qJ, and ]F~,] °b~ and are 
averaged over q;,, in contrast  with the single structure 
factor /3 which was averaged over IF[. Substi tution 
in (5.6) yields the final triplet distribution. However,  
when the terms in (2.4) that are dependent  on 0, are 
neglected, (2.4) results in (4.19) for each ~. When 
these are subst i tuted in (5.6), the terms with summa- 
tion over ~ cancel out. From this it can be concluded 
that  the interatomic correlations responsible for the 
fluctuation in the Wilson curve [first identity of (4.17)] 
do not affect the resulting triplet main exponential  
term when maximum entropy is assumed. This means 
that renormalizat ion of  the ]E] °b' values for each 
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reciprocal spherical layer, which is an option in many 
phasing programs, is in contradiction with these 
maximum-entropy results when using triplet phasing; 
the original IEI ° ~ values normalized with respect to 
the total measured reciprocal space should be used. 
This results in 

P(6, I I F,,.[, k,.,.) 

o oxp [2 cos,:,,,,) (5.7) 

Using ]El definition (2.8), approximating (3.4) by 
/3~-~ o-~ -1 and using 3q(2x)=x, substitution in (5.7) 
yields the Cochran (1955) result: 

P(6, I I F,,l°b", k,,) 

oCexp[2cos(6,)O'3O'~3/2[IIE,~I°b~ ] . (5.8) 
~t 

It is concluded that the maximum-entropy method 
with ME equations (2.4) is consistent with the well 
known exponential Cochran result. However, the 
approximations made also indicate that the full 
exponential result is more complicated. As the 
expansion of the y~ functions in (5.7) contains only 
powers larger than 0, an ]F~F2F31 °b~ factor is present 
in every power, which is in accordance with the 
exponential Edgeworth triplet result (Katie & Gilardi, 
1973). 

In order to solve this set of equations, the 6,-depen- 
dent terms are considered to be an offset vector. 
Identifying this offset vector with the first-order 
differential matrix in the Taylor expansion of the 
three functions in the /3~, variables, the set of 
equations may be solved by inverting the differential 
matrix: 

U2 U3 U2 U3 \ 
1 or3,83 ~U-'~- COS ( O, ) or3fl2 ~ - - -  COS ( ~b, ) 

/ / 

Ut U3 U~ U3 

- -  cos (0,) or3O~ cos (~,) 1 or3B2 U~ U2 Ut U2 

[f12B3( U2 U3/ Ut)\ 
x |~,~( u, u /u2) ]  o-.,, cos (~,,). 

\ fl,fl2( u, u2/ u~) / 
(6.3) 

t The/3~, are defined as (using now f l , -  tr~ ~) 

t 1 -1 rr2 
f t .  =Or21(1-3t-~0"2 o r 4 u . ) .  ( 6 . 4 )  

The determinant of the matrix cannot be zero when 
this solution is not singular. As the determinant is 
positive for UI = U2--/-/3 ~ 0, it must be positive for 
every valid (U~, U2, U3, 6,) combination: 

6. Higher-order exponential triplet terms 
and the triplet inequality 

In order to derive the higher-order exponential triplet 
terms, the/3~, have to be solved from the three inter- 
dependent ME equations (2.4), averaging now over 
the triplet-invariant random variable 6,, in contrast 
with averaging over the ]E] value as was the case for 
a single structure factor. Expansion of the modified 
Bessel functions may yield the correct exponential 
terms. For simplicity U values are defined as 

U,, = o'~-'lF,,l°b~ = ~;'/~IE.I o'~. (6.1) 

Evaluating in the triplet case the set of three ME 
equations (2.4) and substituting also the 6 rdependen t  
part (5.7) (taking D ~ 0: no correlations for v # v'), 
one obtains the following set of equations [using 
y,(2x) = x(1 - x2/2)]: 

0"21UI  = E l  U l -  ½0r20"4j~ ~ U~ 

o'21 U2 = 

tr21 U3 = 

+ f12f13U2U3a3 cos (6,) 
/32U2 ' -- ~O'20"4~ 2 U23 

+ Blfl3 Ul U30"3 cos (6,) 

-~2~4~u] 

(6.2) 

+ f l l f l2  UI  020"  3 COS ( ¢ , ) "  

II vii = 1 -  tr~2o'~ cos2 (6,){ U~ + U~ + U~ 

-2 tr2 l t r3U,  U z U 3 c o s ( 6 t ) } > O .  (6.5) 

Because cos 2 (6,) -< 1, this is always true in the case 
of equal and positive f~ when the Kar le-Hauptman 
inequality (Karle & Hauptman,  1950) for three struc- 
ture factors is fulfilled: 

2U, U 2 U 3 c o s ( 6 , ) > U ~ + U ~ + U 2 - 1 .  (6.6) 

It can be concluded that this maximum-entropy sol- 
ution leads to a weaker probabilistic inequality that 
may be compared with the Kar le-Hauptman triplet 
inequality. Apparently, for the values at the maximum 
of the distribution as defined by (2.4), the inequalities 
are weaker than but close to those derived for expec- 
ted values (Bricogne, 1984, § 6.1.2). For derivation of 
the exponential multiplet distributions the following 
matrix inversion formula is used: 

( I + A )  -1 = I - A + A 2 - A 3 +  . . . .  (6.7) 

Although this power series need not be convergent 
for every 6,, it can be averaged over 6, using 

(cos 2" ( 6 ) ) = 2 - 2 - ( 2 ; ) .  (6.8) 
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The fo l lowing/3 ,  values result (up to order  N-2): 
2 I -1 2 i -2  2z U2_.I_ U 3 ) }  /3,=or2~{l+~or2 or4U,+~or2 o'3t 

1 - I  2 1 -2 2/ 2 2 
/32 = 0"2-1{1 +~or2 0"4U2+ ~0"2 or3t U, + U3)} 

/3~ = o-;'{1 + ~or~' -'or.u]+'~or2-2 o-~t2" u,~ + ub } .  

(6.9) 

Finally, the/3,~ have to be corrected for the fact that  
P(IF, I) = P(IF,  I)P(IF2I)P(IF31) no longer. Integration 
of (5.8) over 6, gives 

P(IGIIk.)oc P(IF, IIk,)P(IF21Ik2)P(IF31Ik3) 
x lo(2or3/3,/32/331F, F2F31). (6.10) 

Using log [ 10(2x)] -=- x 2 and ([E.[ 2) = 1 since no phases 
-4  2 are involved here, from all the /3., o2 o"3 has to be 

subtracted. Substi tution in (5.7) and using again 
y , (2x)  = x(1 - x2/2): 

P(6, IIF.l°b% k. )  

oCexp (2 cos (6,)U, U2U3 

x{o"3 3o'~ -3or]+[o~2or]+ '  - '  -- ~(O" 2 0"30" 4 -- 0"5) ] 

2 
x (  U2+ U ] +  U 3 ) } ) .  (6.11) 

Compar ing  this with the exponent ial  Edgeworth trip- 
let result [Karle & Gilardi,  1973, equation (1)], it can 
be concluded that most N -3/2 terms are present.  The 
extra terms in the Edgeworth result may result from 
the fact that the third term in (2.11) has been neglected 
in the derivation of the triplet cluster integral result 
(5.2). 

7. Exponential quartet terms 

Starting with a set of  ME equations of an arbitrary 
number  of  intensities (2.4), a summat ion  over all 
invariants of irreducible cluster integrals like (5.2) 
results. For the quartet  phase sum the 7 x 7 differential 
matrix of  the set of seven equations (2.4) can easily 
be computed  and inversion and substi tution again 
result in an exponential  distribution. The general 
exponential  expression is, taking no interatomic cor- 
relations into account,  with i the index over the 
invariant  multiplets 0~ and/z~ the index over the main 
intensities corresponding with 6~: 

P(6,IIF.,I.k.,) 

ocexp [2 ~ cos (6i)Y~ H 3,,(2/3~,,f.lG, I ) ] . .  ,, (7.1) 

In the quartet  case seven terms are taken into account  
in (7.1) corresponding with one quartet  phase sum 
and six triplets. The resulting offset vector is [denoting 
indices 1 , . . . ,  7 for h, k, 1, - h -  k -  !, h + k, h + !, k + ! 

respectively, 6q for the quartet  phase sum and 
0 1 , ' ' ' ,  06  for the six corresponding triplet phase 
sums (125), (345), (136), (246), (147), (237) respec- 
tively, using 71(2x)=  x and [3, = o-~']: 

U/1{0-230-4 U 2 U 3 U 4 cos  ( 4,q ) + 0;20"3[ U 2 U 5 cos  (4,1) 

Jr U3 U6 c os  (I]./3)+ U4U 7 cos  (¢5)]}  

U21{0"230"4 UI U 3 U 4 cos  (4,q) + 0"220"3[ U I U 5 cos  (4,1) 

-']'- U4 U 6 cos  (I]/4)-t- U3 U 7 cos  (I]/6)]} 

U31{0"230-4 U,  U2U 4 cos  (4,q) -~- 0"220"3[ U4U 5 cos  (I]/2) 

+ U 1 U 6 cos  (4,3) + U2 U7 cos  (I//6)]} 

U;'{0";30"4 U, U2 U3 cos (G)  + °-;2°-3[ U3 U5 cos (4'2) 

+ U2 U6 cos (4,4) + U, U7 cos (4,5)]} 

U510";20-3{ U,  U 2 cos  (4,1) t -  U3U 4 cos  (I//2) } 

U610";20"3{ U 1U 3 cos  (4,3) "]- U2 U4 cos  (4,4)} 

U7'0"220-3{ UI U 4 cos  (4 ,5 )+  U2U 3 cos  (4,6)} 

(7.2) 

Inversion of  the 7 x 7 differential matrix leads to an 
exponential  distr ibution as in the triplet case. The 
only terms of  order  N - '  however  result from the 
lower right 3 x3  diagonal  submatrix,  yielding the 
following set of/3,, values: 

- I  
31 =or2 

32 : 131"2 1 

33  = 0"21 

3 4  = 0"2 ' 

/35 : or2'{ 1 - U5'o'2 'o '3[ U, 02 cos (6 , )  
(7.3) 

+ U 3 U  4 c o s  (I//2)]} 

/36 = 0"2 '{1 - U 6  I o 2 ' o r 3 [  U ,  U 3 c o s  ( 6 3 )  

-Jr U2 U 4 c o s  ( 0 4 ) ] }  

/37 • or2'{1 - U~'or~'or3[ U, U, cos (6s) 

+ U2U3 cos (66)]}- 

As a cos (62) term appears  in the solution of /35,  a 
product  cos (62) cos (61) appears  from the first triplet 
product  in (7.1), which can be t ransposed in a cos (6,,) 
term using 6, + 62 = 6q : 

cos (62) cos (6,) : cod (62) cos (G) 

+cos  (62) sin (62) sin (G~). (7.4) 

With an average now over 62, by (6.8) the first term 
results in a pure cos (6q) term and the second term 
vanishes, which confirms the cross-term principle. 
Similar formulae hold for the other pairs of triplets 
that  sum up to the quartet  and this is easily generalized 
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to higher powers of cos (0i). The resulting exponen- 
tial distribution up to order N -~ is equal to the well 
known exponential quartet distribution (Hauptman,  
1975a, 1976): 

P(Oq, 0 t , . . . ,  0611F~,l°b~, k , )  

oCexp {2 cos ( Oq) UI U2U3U4( or4- 30.2 I0.2) 

+ 2 0 r 3 [  U I U2U 5 c o s  ( 0 1 ) - 1 t - . . .  'It- U2U3U7 c o s  ( 0 6 ) ] } .  

(7.5) 

This is also the exponential Edgeworth result 
(Peschar, 1987). Finally, P(0ql F~ °b~,k~,) can be 
obtained by integrating out the 0~ under the restriction 
0 1 " ] - 0 2  = 0 3 + 0 ] / 4  = 0 / / 5 + 0 6  = I//q [Hauptman,  1975b, 
equation (2.5)]. From this it may be concluded that 
the well known exponential quartet distribution is 
consistent with maximum-entropy calculations. 
Higher-order exponential quartet terms can be 
derived in analogy with the higher-order triplet terms, 
taking into account the cross-term principle as men- 
tioned. 

Derivation of the quartet irreducible cluster integral 
is similar to the triplet case (5.2). However, after 
substituting the maximum-entropy solution (4.19) for 
each/z assuming also interatomic correlations, these 
cluster terms do not cancel out as in the triplet case 
because of the cross-term principle. The extra terms 
K~, contain the remaining cluster terms: 

K~, = 0"210.3 ~f2 [ , ~  n~f,,sin (kud~,,)/k~d~, 

-- V -I ~ f , ,G,(k, ,  D~,,) . (7.6) 
K=I 

These terms may be identified by the first identity of 
(4.17) with expected (IEI 2) values" 

K .  "-- o-;' o-]((I E~12) - 1) (7.7) 

where the (IE,,J 2) are the expected values in the 
reciprocal spherical layers obtained from the Wilson 
curve (corrected for the Debye-Waller factor). 

In Appendix B it is demonstrated that, for unequal 
f , ,  the differences between the f~ being relatively 
small, and keeping the average of the f~ constant: 

(o-~o- , , -  o-~) /o-~o- ,  = (I E I~) - 1. (7.8) 

When the substituted ]El °bs values are normalized 
with respect to the total measured reciprocal space, 
for each individual reciprocal spherical layer the 
(IEI 2) can be unequal to 1, yielding the terms (7.7). 
Assuming interatomic correlations for that spherical 
layer is equivalent to assuming unequal f~ but keeping 
the average of the f~ constant. This effect of inter- 
atomic correlations affects the exponential quartet 
main term. Distribution (7.5) may be corrected for 
radial interatomic correlations by replacing the main 

quartet term with 

0.4- 30.210.~ - (Ks + g 6 +  g7) (7.9) 

where the K~, are defined by (7.7). Renormalized 
IEI °"~ values IE;,I are defined as 

lEVI2= IE,  I2(IE~I2) - '  

= IE,,12[1 - ((IE,12) - 1)]. (7.10) 

Using ( 1 - x )  I/2~- 1 - x / 2 ,  it appears that for equal 
atoms the K~ are proportional to the renormalization 
residues. However, in the distribution they are not 
linked to the corresponding U values in the main 
quartet term. It is concluded that non-renormalized 
JEJ °b~ values should be used as in the single triplet 
distribution, with the main quartet terms corrected as 
in (7.9). 

8. Concluding remarks 

Applying the central limit theorem for random vari- 
ables to both the reciprocal vectors and the atomic 
coordinates, an expression for the joint probability 
distributions has been derived that can be evaluated 
by irreducible cluster integrals. The set of multipliers 
is found by solving maximum-entropy equations, 
which are equivalent to the multi-channel solution 
(Bricogne, 1988). The method is valid for unequal 
scattering factors and for non-uniform dependent a 
priori distributions. The single structure-factor results 
are consistent with the Debye scattering equation. 

The exponential triplet distribution has been 
derived including interatomic and minimal inter- 
atomic distances. The result is in agreement with the 
Edgeworth exponential triplet distribution for 
unequal scattering factors up to order N -3/2 (Karle 
& Gilardi, 1973), provided that only ]El °bS values 
normalized with respect to the total measured 
reciprocal space are used; renormalization with 
respect to each reciprocal spherical layer is not cor- 
rect. The resulting probabilistic triplet inequality may 
be compared with the Kar le-Hauptman triplet 
inequality. Using a uniform independent a priori dis- 
tribution, the well known exponential quartet distri- 
bution (Hauptman,  1975a, b) is found. The cluster 
integral results indicate that radial interatomic corre- 
lations such as interatomic and minimal interatomic 
distances affect the main quartet exponential term 
only. Quantitatively these terms can be obtained from 
the Wilson curve. 

APPENDIX A 

For the y; functions as defined by (3.2) the following 
identities hold: 

d,yi(x)/dx=½{'Yi_l(X)-Jt-~/i+l(X)}--'yl(X)~i(X) (A.1) 

y_ , (x )=  %(x); y , ( - x ) = ( - 1 ) ' y , ( x )  (A.2) 



M. J. KRONENBURG,  R. PESCHAR AND H. SCHENK 479 

CX3 

exp[xcos (~)]=lo(x )  E y,,(x) exp(in@). (A.3) 
r l = - - o c  

The following integral is used to evaluate the cluster 
integrals: 

J cos (nk .  r) dr=47rD(nk)-2[sin (nkD)/nkD 
Ir{<D 

- c o s  (nkD)]. (A.4) 

The only terms that have to be taken into account 
from definitions (4.4) and (4.5) are the terms depen- 
dent on both D and k, or possibly invariants. The 
result for el follows from definition (4.4) and integral 
(A.4). The Fourier transform of the first term in e, is 
equal to the Heaviside function, which is the pair 
correlation function for a hard-sphere gas go(r) in 
the pair correlation function expansion (Nijboer & 
Van Hove, 1952): 

g(r )=go(r ){ l+(N/V)g~(r )+. . . }  (A.5) 

go(r) = H ( r -  D). (A.6) 

The result for e2 is more difficult to obtain and 
requires integration over four volumes separated by 
two intersecting spheres. Integrating over interatomic 
vectors, the following double integral results in e2 
(taking f~ = f  for simplicity): 

e2 = V(to) 2 ~ { H ( r l - D )  
r l  

x exp [ - 2 f l f  2 cos (k.  r,)] - 1}f(r,) dr, (A.7) 

where f ( r , )  is again a cluster integral: 

f ( r , )  = J {H(r2 -D)  exp[ -2 f l f  2 cos (k.  r2) ] -  1} 
r2 

x ( H ( l r , - r 2 l -  D) 

×exp {-2/3f 2 cos [k .  ( r , - r 2 ) ] } -  1) dr2. (A.8) 

The f ( r , )  is an integral over the four volumes of two 
intersecting spheres, which can be expressed as 

f ( r l )  = ~ {exp [ - 2 f l f  2 cos (k.  r2)] -  l} 
I1" 2 

x (exp {-2/3f 2 cos [k .  ( r , - r 2 ) ] } -  1) dr2 

+ j" exp [-23f2{cos (k.  r2) 
Ir2l< D, lr~-r2l< D 

leading term" 

2v<,o> 2 J J exp {-2 t~f  2 
[rll<D [r2l< D 

x [cos (k.  r,) + cos (k.  r2)]} 

x (exp {-2/3f 2 cos [k .  (rl - r2)]} - 1) drt dr2. 

(A.10) 

The following approximation in the integrand is 
made: 

exp {-2f l f  2 cos [k .  ( r l -  r2)]} 

-~ 1 - 2flf2 cos (k.  rl) cos (k.  r2) (A.11) 

which results in (4.10). Numerical evaluation of the 
Fourier transform of this result shows that the Fourier 
transform of the second cluster integral result is 
almost equal to g,(r) for a hard-sphere gas (Kirk- 
wood, 1935; Nijboer & Van Hove, 1952): 

J 'g~(r)=~Tr(2-3r+~r3) for r<-2 
(A.12) 

[g,(r) =0 for r->2. 

The el and e2 results for a single structure factor 
are in this way found to be consistent with the pair 
correlation function for a hard-sphere gas by Fourier 
transform. 

A P P E N D I X  B 

In order to prove equation (7.8), assume all scattering 
factors f~ equal to f, except for a small set of K groups 
of 2n~ atoms (K ~ 1 , . . . ,  K), in which nK atoms have 
scattering factors equal to f ,  = f+dfK and n~ atoms 
equal to f ,  = f - d f , .  This ensures that the average of 
f ,  is equal to f The df~ values are all relatively small 
with respect to f and all n, small compared with N. 

In that case, evaluation of the 0-, values and using 
f~ ---f results in 

__ 2 
0 " 2 0 " 4  0 - 3  20-4 E n~(f~ _f)2.  ( B.1 ) 

K 

Evaluation of (IFI 2) = Z ~f2 yields in that case 

(Ifl  2) = 1 + 20-f' E n~(f~ _f)2. (B.2) 
K 

Combination of (B.1) and (B.2) yields (7.8). 

+ cos [k.  ( r , -  r2)]}] dr2 

- 2  J exp[ -2 /3 f  2cos(k . r2)]  
[r21< D 

x (exp {-2/3f 2 cos [k.  ( r , -  r2)]}- 1) dr2. 

(3.9) 

Combining (A.8) with (A.9), taking as contributions 
only those terms that are dependent on both radii 
and assuming the intersecting volume to be small 
relative to each sphere volume, one obtains the 
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Abstract 

Shortage or ambiguity in diffraction data may limit 
the efficiency of structure analysis techniques. The 
joint probability distribution method has been used 
in order to estimate the values of non-measured 
diffraction magnitudes. Some experimental tests show 
the formulae have an efficiency which is promising. 

1. Introduction 

Sometimes the number of measured diffraction mag- 
nitudes is not sufficient for the satisfactory attainment 
of a crystal structure solution and refinement. 
Shortage of data occurs regularly in macromolecular 
crystallography (too many structural parameters to 
determine compared with the number of available 
independent observations), but occasionally it also 
occurs in single-crystal small-molecule crystallogra- 
phy when the diffracting crystal is of poor quality or 
is unstable under experimental conditions. Shortage 
of data is very critical in powder crystallography, 
where occasional or systematic overlapping of diffrac- 
tion effects does not allow experimental measurement 
of tens or hundreds of single diffraction amplitudes. 

The most effective way for overcoming the problem 
is to optimize and /o r  simultaneously to use some 
complementary experimental techniques (e.g. low- 
temperature apparatus or synchrotron radiation or a 
combination of X-ray and /o r  neutron and /o r  electron 
diffraction etc.). Often such techniques are not 
immediately available and the practical problem may 
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be that of predicting the values of some non-measured 
diffraction amplitudes by exploiting the measured 
data as prior information. For example, if data up to 
(sin 0)/)t = Pl are available, one may try to predict 
the amplitudes in the range/22-  Pt with p2 > p~. The 
problem may be of great importance for crystal-struc- 
ture-solution methods. In Patterson techniques such 
supplementary information can make the deconvol- 
ution of the Patterson map easier. In direct methods 
it will make the phasing process and the identification 
of the correct solution more efficient. 

The simplest way to predict the value of a non- 
measured intensity with vectorial index h is to use 
Wilson's statistics. Expectations are 

(IEhl)=(2/zr) 1/2 for centric structures ( l a )  

(IEbl) = (rr /2)  1/2 for non-centric structures. ( lb )  

Relations ( la ,  b) are too poor to be used for most 
practical purposes. Probabilistic expressions for 
estimating I Ehl from all the most reliable quartets in 
which h is a cross term were presented by Van der 
Putten, Schenk & Tsoucaris (1982). More recently, 
David (1987) suggested a formula which relies on the 
fact that a Patterson function P(u) is a positive func- 
tion as well as pE(u)" Sayre's (1952) squaring method 
was then applied. David's conclusive formula is 

(I Fhl 2) --~ Y. I Fd=l Fh-kl =. (2) 
k 

Even if of large interest, (2) suffers from two limita- 
tions: 
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